Posts Tagged ‘Rice’

Climate variability and yield risk in South Asia’s rice–wheat systems : emerging evidence from Pakistan

Posted by gabrielamartinez on , in Journal Articles

57981Authors: Muhammad Arshad.; Amjath-Babu, T.S.; Krupnik, T.J.; Aravindakshan, S.; Abbas, A.; Kachele, H.; Muller, K.

Published in: Paddy Water Environment, In press.

Rice and wheat are the principal calorie sources for over a billion people in South Asia, although each crop is particularly sensitive to the climatic and agronomic management conditions under which they are grown. Season-long heat stress can reduce photosynthesis and accelerate senescence; if extreme heat stress is experienced during flowering, both rice and wheat may also experience decreased pollen viability and stigma deposition, leading to increased grain sterility. Where farmers are unable to implement within-season management adaptations, significant deviations from expected climatic conditions would affect crop growth, yield, and therefore have important implications for food security. The influence of climatic conditions on crop growth have been widely studied in growth chamber, greenhouse, and research station trials, although empirical evidence of the link between climatic variability and yield risk in farmers’ fields is comparatively scarce. Using data from 240 farm households, this paper responds to this gap and isolates the effects of agronomic management from climatic variability on rice and wheat yield risks in eight of Pakistan’s twelve agroecological zones. Using Just and Pope production functions, we tested for the effects of crop management practices and climatic conditions on yield and yield variability for each crop. Our results highlight important risks to farmers’ ability to obtain reliable yield levels for both crops. Despite variability in input use and crop management, we found evidence for the negative effect of both season-long and terminal heat stress, measured as the cumulative number of days during which crop growth occurred above critical thresholds, though wheat was considerably more sensitive than rice. Comparing variation in observed climatic parameters in the year of study to medium-term patterns, rice, and wheat yields were both negatively affected, indicative of production risk and of farmers’ limited capacity for within-season adaptation. Our findings suggest the importance of reviewing existing climate change adaptation policies that aim to increase cereal farmers’ resilience in Pakistan, and more broadly in South Asia. Potential agronomic and extension strategies are proposed for further investigation.

Genetic diversity analysis reveals importance of Green Revolution Gene (Sd1 Locus) for drought tolerance in rice

Posted by gabrielamartinez on , in Journal Articles

57499Authors: Vikram, P.; Kadam, S; Singh, B.P; You Jin lee; Jitendra Kumar Pal; Singh, S; Singh, O.N; Mallikarjuna Swamy, B.P; Thiyagarajan, K; Sukhwinder-Singh; Singh, N.K.

Published in: Agricultural Research, In press.


Genetic diversity analysis based on genome-wide single-nucleotide polymorphism (SNP) assay of a set of Indian rice cultivars including modern high-yielding varieties and landraces revealed two broad groups, one with “Aus” and the other with “Indica” cultivars. Marker analysis of these genotypes was carried out for three major drought tolerance QTLs as well as green revolution gene, sd1. This gene collocates with a drought QTL, qDTY 1.1 . The well-known drought-tolerant landraces or traditional varieties had the “tall” allele of the sd1 gene, indicating the possibility of close linkage, pleiotropy or both associated with this gene. Profiling of rice genotypes investigated in the present study with drought QTL markers, genome-wide SNPs, and sd1 gene reveals the importance of using multiple genes rather focusing on any single major QTL/gene for drought tolerance. Our results suggested that rice genetic improvement for rain-fed areas require enhanced use of pre-green revolution varieties.

Guidelines for Dry Seeded Rice (DSR) : in the Terai and Mid Hills of Nepal

Posted by gabrielamartinez on , in CIMMYT Publications

56858Authors: Devkota, K., Sudhir-Yadav, Ranjit, J.D., Sherchan, D.P., Regmi, A., Akhtar, T., Humphreys, E., Chauhan, B.S., Malik, R.K., Kumar, V., McDonald, A., Devkota, M.

Published in: Nepal, CSISA; IFAD; IRRI; CIMMYT, 2014.


Dry seeded rice (DSR) is becoming an attractive option for farmers as it has a much lower labor requirement and establishment cost than manually transplanted rice. Labor for transplanting rice has become scarce and costly because laborers are shifting from agriculture to industry, public works, and overseas employment. DSR can be readily adopted by small farmers as well as large farmers, provided that the required machinery is locally available (e.g., through custom hire). Best practice involves using a 2- or 4-wheel tractor-drawn drill to seed in rows in nontilled or dry tilled soil, as for wheat. Because the soil is not puddled, DSR also has a lower water requirement for crop establishment.

Guidelines for Dry Seeded Rice (DSR) : in the Eastern Gangetic Plains of India

Posted by gabrielamartinez on , in CIMMYT Publications

56853Authors: Yadav, S., Humphreys, E., Chauhan, B.S., Kamboj, B.R., Laik, R., Kumar, V., McDonald, A., Jat, M.L., Gathala, M.K., Malik, R., Sukhwinder-Singh

Published in: India: CSISA; IFAD; IRRI; CIMMYT, 2013.


Dry seeded rice (DSR) is becoming an attractive option for farmers as it has a much lower labor requirement than manually transplanted rice. Labor for transplanting rice has become scarce and costly because laborers are shifting from agriculture to industry, public works, and services. DSR can be readily adopted by small farmers as well as large farmers, provided that the required machinery is locally available (e.g., through custom hire). Best practice involves using a 2- or 4-wheel tractor-drawn drill to seed in rows in nontilled or dry tilled soil, as for wheat. Because the soil is not puddled, DSR also has a lower water requirement for crop establishment.

Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor

Posted by gabrielamartinez on , in Journal Articles

56844Authors: Singh, B.; Jat, M.L.; Singh, V.; Purba, J.; Sharma, R.K.; Singh, Y.; Gupta, R.K.; Thind, H.S.; Chaudhary, O.P.; Chandna, P.; Khurana, H.S.; Kumar, A.; Singh, J.; Uppal, H.S.; Uppal, R.K.; Vashistha, M.; Gupta, R.

Published in: Precision Agriculture, 16(1): 2015.


Blanket fertilizer nitrogen (N) recommendations for large irrigated transplanted rice tracts lead to low N use-efficiency (NUE) due to field-to-field variability in soil N supply and seasonal variability in yield. To achieve high NUE, a fertilizer N management strategy based on visible and near-infrared spectral response from plant canopies using a Green- SeekerTM optical sensor was evaluated. Seven field experiments were conducted during
2005–2007 at two locations in the Indo-Gangetic plains of South Asia to define relationships between in-season sensor measurements at panicle initiation (PI) stage and up to 2 weeks later, and yield of rice. During 2006–2010, seven field experiments were conducted to assess the sensor-based N management strategy and to work out the prescriptive N management to be followed prior to applying sensor-guided fertilizer dose. During 2010 and 2011, the sensorbased N management strategy was evaluated versus farmers’ fertilizer practice at 19 on-farm locations. Relationships with R2 values 0.51 (n = 131), 0.45 (n = 74) and 0.49 (n = 131), respectively, were observed between in-season sensor-based estimates of yield at 42 (PI stage), 49 and 56 days after transplanting of rice and actual grain yield of rice. Applications of 30 kg N ha-1 at transplanting and 45 kg N ha-1 at active tillering stage were found to be the appropriate prescriptive strategy before applying the GreenSeeker-guided dose at PI stage.

Sensor-guided N management resulted in similar grain yields as the blanket rate farmer practice, but with reduced N rates, i.e. greater recovery efficiency (by 5.5–21.7 %) and agronomic efficiency [by 4.7–11.7 kg grain (kg N applied)-1]. This study revealed that high yields coupled with high NUE in transplanted rice can be achieved by replacing blanket fertilizer recommendation by an optical sensor-based N management strategy consisting of applying a moderate amount of fertilizerNat transplanting and enough fertilizerNto meet the high N demand during the period between active tillering and PI before applying a sensorguided fertilizer N dose at PI stage of rice.

Mechanized Transplanting of Rice (Oryza sativa L.) in Nonpuddled and No-Till Conditions in the Rice-Wheat Cropping System in Haryana, India

Posted by gabrielamartinez on , in Journal Articles

56839Authors: Malik, R.; Kamboj, B.R.; Yadav, B.D.; Yadav, A.; Goel, N.K.; Gill, G.; Chauhan, B.S.

Published in: American Journal of Plant Sciences, 4: 2409-2413, 2013.


The common practice of establishing rice in the rice-wheat system in India is manual transplanting of seedlings in the puddled soil. Besides being costly, cumbersome, and time consuming, puddling results in degradation of soil and the formation of a hard pan, which impedes root growth of subsequent upland crops. In addition, decreased availability and increasing cost of labor have increased the cost of rice cultivation through conventional methods. Because of these concerns, there is a need for mechanized transplanting of rice which is less labor-intensive and can ensure optimum plant population under nonpuddled and/or no-till conditions. A large number of on-farm trials were conducted at farm- ers’ fields in Haryana, India, from 2006 to 2010 to evaluate the performance of the mechanical transplanted rice (MTR) under nonpuddled and no-till situations as compared to conventional puddled transplant rice (CPTR). Compared with CPTR, nonpuddled MTR produced 3% – 11% higher grain yield in different years. Rice cultivars, viz. HKR47, HKR127, PR113, PR114, PB1, PB1121, CSR30, and Arize6129, performed consistently better under nonpuddled MTR as compared to CPTR. Performance of different cultivars (PR113, PR114, HKR47, and Pusa 44) was also better under no-till MTR as compared to CPTR. The “basmati” cultivar CSR30 performed equally in no-till MTR and CPTR sys- tems. The results of our study suggest that rice can be easily grown under nonpuddled and no-till conditions with yield advantages over the CPTR system. Even in the case of similar yield between CPTR and MTR systems, the MTR system will help in reducing labor requirement and ultimately, will increase overall profits to farmers.

Options for increasing the productivity of the rice–wheat system of north-west India while reducing groundwater depletion : Part 1. Rice variety duration, sowing date and inclusion of mungbean

Posted by gabrielamartinez on , in Journal Articles


Authors: Singh, B. ; Humphreys, E.; Yadav, S.; Gaydon, D.S.

Published in: Field Crops Research, 173: 68–80, 2015.


The irrigated rice–wheat (RW) systems of north-west India are critical for food security. However, these systems are not sustainable due to over-exploitation of the groundwater resource on which they largelyrely. Current farmer practice (FP) involves manual transplanting of rice into heavily tilled/puddled soil from 10 June to early July, prolonged periods of flooding, rice residue burning, and heavy tillage prior to sowing wheat. Inclusion of a short duration mungbean crop between wheat harvest and rice transplanting has also been promoted at times. Options for reducing irrigation input to the RW system include delaying transplanting until after the monsoon rains start (late June), switching to shorter duration rice varieties, and alternate wetting drying (AWD) water management for rice. However, the effect of such practices on groundwater depletion is not well-understood. Examining the effects of these options on cropping system yield and components of the water balance and water productivity is highly complex because of the need to consider the interactions between each crop in the system. Therefore, we used a cropping system model (APSIM) to compare the performance of RW systems with a range of rice transplanting dates (4 dates from 10 June to 10 August) and rice variety durations (long – 158 d, medium – 144 d, short – 125 d), with and without mungbean in the system. The results suggest that changing from long to short duration varieties would reduce ET by around 250 mm, more than enough to halt the groundwater decline, but with a reduction in rice-equivalent system yield of about 2.5 t ha−1 compared with current FP.
On the other hand, inclusion of mungbean into the RW system results in much higher system yield than recommended farmer practice (by over 3 t ha−1), but the tradeoffs are much higher ET (by 250–300 mm) and irrigation requirement (by 300–450 mm). The results of this study suggest that more effort should be directed towards the development of higher-yielding, short duration rice varieties to reduce groundwater depletion of the RW system while maintaining yield, and that inclusion of short duration summer crops such as mungbean should not be recommended.

Compendium of deliverables of the conservation agriculture course 2014

Posted by Carelia Juarez on , in CIMMYT Publications

Compendium of deliverables of the conservation agriculture course 2014. 2014. Verhulst, N.; Mulvaney, M.J.; Cox, R.; Van Loon, J.; Nichols, V. (eds.). Mexico, DF (Mexico): CIMMYT iv, 43 p.

99448.pdfThis book is the result of the hard work of 5 CIMMYT trainees who work on sustainable practices in India, Ethiopia and Zimbabwe, and participated in the 2014 visiting scientist program “Conservation agriculture: Laying the groundwork for sustainable and productive cropping systems”. Over 5 weeks the scientists received an intense training program that combined mentoring and problem solving approaches. They actively participated in the ongoing cropping systems management activities of CIMMYT’s Global Conservation Agriculture Program, Latin-America, at the experimental stations near Mexico City at El Batán and Toluca, and in nearby farmers? fields. Emphasis was given to conservation agriculturebased technologies for both irrigated and rainfed conditions: reduced tillage, using alternative crop residue management strategies and crop rotation.Wheat and maize were the main crops under study.

Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo-Gangetic Plains of India

Posted by Carelia Juarez on , in Journal Articles

Published in Agriculture, Ecosystems and Environment 117  : 85-97, 2013

Mahesh K. Gathala, Virender Kumar, P.C. Sharma, Yashpal S. Saharawat, H.S. Jat, Mainpal Singh, Amit Kumar, M.L. Jat, E. Humphreys, D.K. Sharma, Sheetal Sharma and J.K. Ladha

Increasing scarcity of resources (labour, water, and energy) and cost of production, along with climate variability, are major challenges for the sustainability of rice–wheat system in the northwesten Indo-GangeticPlains (IGP). We hypothesized that adopting the principles of conservation agriculture together with best crop management practices would improve system productivity and overall efficiency, resulting in a higher profitability. To test this hypothesis, we evaluated the performance of four cropping system scenarios (treatments), which were designed to be adapted to current and future drivers of agricultural changes. The treatments including farmers practices varied in tillage and crop establishment methods, residue management, crop sequence, and crop management. Zero-tillage direct-seeded rice (ZT-DSR) with residue retention and best management practices provided equivalent or higher yield and 30–50% lower irrigation water use than those of farmer-managed puddled transplanted rice (CT-TPR). Overall, net economic returns increased up to 79% with a net reduction in production cost of up to US$ 55 ha−1 in ZT-DSR than CT-TPR. Substituting rice with ZT maize was equally profitable but with 88–95% less irrigation water use. Avoiding puddling in rice and dry tillage in maize with residue retention increased yield (by 0.5–1.2 t ha−1) and net economic returns of the succeeding wheat crop. Inclusion of mungbean in the rotation further increased system productivity and economic returns. In summary, our initial results of 2-year field study showed positive effects of CA-based improved management practices on yield and system efficiencies with greater benefits in the second year. There is a need of longer term monitoring to quantify cumulative effects of various interventions and to eventually make recommendations for wider dissemination.

Potassium Fertilization in Rice-Wheat System across Northern India: Crop Performance and Soil Nutrients

Posted by Carelia Juarez on , in Journal Articles

Published in Agronomy Journal 105 (2) : 1-11, 2013

Vinod K. Singh, Brahma S. Dwivedi, Roland J. Buresh, M. L. Jat, Kaushik Majumdar, Babooji Gangwar, Vidhi Govil, and Susheel K. Singh

Rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping in South Asia is under stress due to widespread removal of plant nutrients in excess of their application. We evaluated K, S, and Zn application to rice and wheat in 60 farmer’s fields in five districts across northern India. We compared the existing farmer’s fertilizer practice (FFP), which in most cases did not include application of K, S, or Zn, with application of K only, S + Zn, or K + S + Zn. Application of K increased rice yields by 0.6 to 1.2 Mg ha–1 and wheat yields by 0.2 to 0.7 Mg ha–1 across the locations varying in soil texture, soil K, climate, and irrigation. Application of S and Zn with K further increased yields. Added net return from fertilization with only K, as compared to FFP, ranged from U.S.$ 114 to 233 ha–1 for rice and U.S.$ 29 to 214 ha–1 for wheat. Added net return further increased when S and Zn were combined with K. Total plant K per unit of grain yield was comparable for mature rice and wheat (22 kg Mg grain–1). Soil exchangeable and non-exchangeable K decreased without K application during one rice–wheat cropping cycle. Rice and wheat yields increased with application of K across the range in exchangeable soil K from 60 to 162 mg kg–1. Approaches are needed to reliably predict fertilizer K requirements when crops respond relatively uniformly to K across a wide range in exchangeable K.