Posts Tagged ‘Maize’

Effect of different mulching materials on maize growth and yield in conservation agriculture systems of sub-humid Zimbabwe

Posted by gabrielamartinez on , in Journal Articles

The introduction of conservation agriculture (CA) for smallholders increased the competition for crop residues between crop and livestock enterprises of the mixed smallholder farming system. Smallholders practicing CA have resorted to using grass and leaf litter in addition to available crop residues. The effect of these different mulching materials on maize (Zea mays L.) growth and yield is not well documented in smallholder CA systems of southern Africa. A two-year experiment was run in 2012/13 and 2013/14 seasons to evaluate the effect of maize residues, grass (Hyparrhenia filipendula (L.) Stapf.) and leaf litter that farmers are currently using and residues from leguminous species, sunhemp (Crotolaria juncea L.) and Tephrosia (Tephrosia vogelii ((Hook) f.)) on maize nitrogen (N) uptake, growth and yield. Significant differences in soil water content across treatments were only observed during March in 2012/13 season. Maize residues retained more soil water and Tephrosia had the lowest soil water content when seasonal rainfall pattern was erratic. Grass and Tephrosia treatments had the lowest chlorophyll content. Conventional ploughing, maize residues and leaf litter had similar chlorophyll content which was significantly higher than grass and Tephrosia treatments. At a site with higher initial soil fertility conventional ploughing treatment out yielded the other treatments by 727–1265 kg ha−1. With more degraded sandy soil conventional practice had 119–430 kg ha−1 more maize grain than the CA treatments. With adequate fertilization, the mulching materials have a similar effect on maize growth in basins and direct seeding. Further studies on different application rates of mulching materials and mineral N fertilizer, and nutrient release patterns of these residues are critical in order to better understand soil fertility management under smallholder CA systems.

Source: Open Access Journals

Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya

Posted by gabrielamartinez on , in Journal Articles

A study was conducted to assess the performance of maize hybrids with Bt event MON810 (Bt-hybrids) against the maize stem borer Busseola fusca (Fuller) in a biosafety greenhouse (BGH) and against the spotted stem borer Chilo partellus (Swinhoe) under confined field trials (CFT) in Kenya for three seasons during 2013e2014. The study comprised 14 non-commercialized hybrids (seven pairs of near-isogenic Bt and non-Bt hybrids) and four non-Bt commercial hybrids. Each plant was artificially infested twice with 10 first instar larvae. In CFT, plants were infested with C. partellus 14 and 24 days after planting; in BGH, plants were infested with B. fusca 21 and 31 days after planting. In CFT, the seven Bt hybrids significantly differed from their non-Bt counterparts for leaf damage, number of exit holes, percent tunnel length, and grain yield. When averaged over three seasons, Bt-hybrids gave the highest grain yield (9.7 t ha1), followed by non-Bt hybrids (6.9 t ha1) and commercial checks (6 t ha1). Bt-hybrids had the least number of exit holes and percent tunnel length in all the seasons as compared to the non-Bt hybrids and commercial checks. In BGH trials, Bt-hybrids consistently suffered less leaf damage than their non-Bt near isolines. The study demonstrated that MON810 was effective in controlling B. fusca and
C. partellus. Bt-maize, therefore, has great potential to reduce the risk of maize grain losses in Africa due to stem borers, and will enable the smallholder farmers to produce high-quality grain with increased
yield, reduced insecticide inputs, and improved food security.

Source: Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya

Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains

Posted by gabrielamartinez on , in Journal Articles

Maize-based crop rotations are advocated as alternate to rice-based systems in South Asia due to better suitability for diverse ecologies, higher yields with less water use and more palatable maize fodder compared to rice, and increased demand of maize from piggery and poultry industries. Alternate tillage and crop establishment practices are important management strategies for tackling the issues of soil health deterioration and over exploitation of underground water resources, particularly in rice based intensive crop rotations. The conservation agriculture (CA) based tillage and crop establishment practices such as zero tillage (ZT) and permanent raised beds (PB) hold potential to enhance soil organic carbon (SOC), physical and biological properties for sustainability of soil health. Therefore, a long term study was conducted to evaluate the twelve combinations of tillage practices (03) and irrigated intensive maize based crop rotations (04) on organic carbon, physical properties and microbial biomass and enzymatic activities of a sandy loam (Typic Haplustept) soil in north-western India. The tillage practices consisted of ZT, PB and conventional tillage (CT) in main plots and four diversified intensive maize based crop rotations (MWMb: Maize-Wheat-Mungbean, MCS: Maize-Chickpea-Sesbaina, MMuMb: Maize-Mustard-Mungbean, MMS: Maize-Maize-Sesbania) in sub plots. In this study we analysed the SOC, physical and biological properties of soil at various depths after 7 years of continuous ZT, PB and CT in diversified maize rotations. Compared to CT plots, the soil physical properties like water stable aggregates (WSA) > 250 μm were 16.1-32.5% higher, and bulk density (BD) and penetration resistance (PR) showed significant (P < 0.05) decline (11.0–14.3 and 11.2–12.0%) in ZT and PB plots at 0–15 and 15–30 cm soil layers. The soil organic carbon (SOC) increased by 34.6-35.3% at 0–15 cm, and 23.6-26.5% at 15–30 cm soil depths with conservation agriculture (ZT and PB) based crop establishment techniques over CT. Similarly, the soil microbial biomass carbon (MBC) under CA based systems increased by 45–48.9% in 0–30 cm profile depth of a sandy loam (Typic Haplustept) soil. Significant (P < 0.05) improvement in soil enzymatic activities i.e., Fluorescein diacetate, dehydrogenase, β Glucosidase and Alkaline phosphatase was also recorded in the CA based treatments. Significant (P < 0.05) synergistic effects of summer legumes (mungbean and Sesbania) with winter legume/cereal in crop rotations were observed on SOC,WSA, BD, PR and Ksat at 0–15 and 15–30 cm depths. Interaction between tillage and crop rotations were significant (P < 0.05) for soil organic carbon, physical properties and enzymatic activities. Thus our long-term study suggests that CA based crop management with selected diversified maize based rotations (MCS and MWMb) can be advocated as sustainable intensification strategy in light textured soils of north-western India and other similar agro-ecologies of South Asia.

Source: Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains

Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem

Posted by gabrielamartinez on , in Journal Articles

The maize-wheat-mungbean (MWMb) cropping system is being advocated as an alternative to the traditional rice-based cropping systems of north-western Indo-Gangetic Plains (IGP) to address the issues of energy and nutritional scarcity, residue burning, decline in biomass productivity and water tables. In semi-arid regions, the climate-change-induced variability in rainfall and temperature may have an impact on phenological responses of cereals and pulses which in turn would affect biomass production, economic yield and energy and water-use efficiency (WUE) of the crops. Henceforth, quantification of bioequivalent yields, energy requirement, economics and WUE of MWMb system is essentially required owing to have better understanding of this cropping system. Following a 4-year study was conducted under different tillage and nutrient management. ZT and PB plots had significantly higher pooled average (17.2–20.3%) biomass productivity, (34.4–39.8%) net returns and (49.8–66.2%) biomass water-use efficiency with lesser (8.5–16.1%) water-use than the CT plots. Significantly higher pooled bioenergetic yields (21.7–35.2%), net returns (31.4–37.8%) and biomass water-use efficiency (30.1–35.2%) was observed in SSNM/Ad-hoc plots compared with FFP plots. The total pooled energy input in ZT/PB and SSNM/Ad-hoc plots was significant (P < 0.05) higher than CT and FFP plots, respectively, with greater net energy output, energy productivity and energy efficiency. The interactions between tillage and nutrient management practices on pooled input energy and energy productivity of MWMb system was significant (P < 0.05). Thus, adoption of conservation tillage (ZT/PB) practices with improved nutrient management (SSNM/Ad-hoc) could be a viable option for achieving higher biomass productivity, water and energy-use efficiency and profitability in MWMb system.

Source: Bio-energy, water-use efficiency and economics of maize-wheat-mungbean system under precision-conservation agriculture in semi-arid agro-ecosystem

High-Provitamin A Carotenoid (Orange) Maize Increases Hepatic Vitamin A Reserves of Offspring in a Vitamin A-Depleted Sow-Piglet Model during Lactation

Posted by gabrielamartinez on , in Journal Articles

The relationship of dietary vitamin A transfer from mother to fetus is not well understood. The difference in swine offspring liver reserves was investigated between single-dose vitamin A provided to the mother post-conception compared with continuous provitamin A carotenoid dietary intake from biofortified (enhanced provitamin A) orange maize (OM) fed during gestation and lactation. Vitamin A-depleted sows were fed OM (n = 5) or white maize (WM) + 1.05 mmol retinyl palmitate administered at the beginning of gestation (n = 6). Piglets (n = 102) were killed at 0, 10, 20, and 28 d after birth. Piglets from sows fed OM had higher liver retinol reserves (P < 0.0001) and a combined mean concentration from d 10 to 28 of 0.11 ± 0.030 μmol/g. Piglets from sows fed WM had higher serum retinol concentrations (0.56 ± 0.25 μmol/L; P = 0.0098) despite lower liver retinol concentrations of 0.068 ± 0.026 μmol/g from d 10 to 28. Milk was collected at 0, 5, 10, 20, and 28 d. Sows fed OM had a higher milk retinol concentration (1.36 ± 1.30 μmol/L; P = 0.038), than those fed WM (0.93 ±1.03 μmol/L). Sow livers were collected at the end of the study (n = 3/group) and had identical retinol concentrations (0.22 ± 0.05 μmol/g). Consumption of daily provitamin A carotenoids by sows during gestation and lactation increased liver retinol status in weanling piglets, illustrating the potential for provitamin A carotenoid consumption from biofortified staple foods to improve vitamin A reserves. Biofortified OM could have a measurable impact on vitamin A status in deficient populations if widely adopted.

Source: High-Provitamin A Carotenoid (Orange) Maize Increases Hepatic Vitamin A Reserves of Offspring in a Vitamin A-Depleted Sow-Piglet Model during Lactation

Africa’s changing farm size distribution patterns : the rise of medium-scale farms

Posted by gabrielamartinez on , in Journal Articles

58096Authors: Jayne, T.S., Chamberlin, J.; Traub, L.; Sitko, N.J.; Muyanga, M.; Yeboah, K.; Anseeuw, W.; Chapoto, A.; Ayala Wineman; Nkonde, C.; Kachule, R.

Published in: Agricultural Economics, 2016, vol. 47 (supplement), p. 197-214

Mexico is the center of origin of diversification of maize (Zea mays L.), there are 3.2 million corn growers and is the largest crop harvested. Most of these producers are in the rural sector, in poverty and inequality. Despite this genetic diversity and represent about 65% of the cultivated area it is little attention has been given to the potential of native maize in commercial terms. The marketing of landraces can be carried out in traditional local markets and specialty markets. This research aimed to identify the dynamics of actual marketing of native maize in Mexico in order to identify options trading in specialty markets for the conservation of the biodiversity of these corns and improve the income of producers. The 492 interviews were made with farmers, traders and processors of native maize customers in the states of Mexico, Tlaxcala and Guerrero. The results show that the main specialty corns produced are the colors and within these the most important in marketing are the targets by consumer preferences corns. It is concluded that currently the market is landraces in traditional local markets; however there is potential for the development of specialty markets that require value added.

The development of quality control genotyping approaches : a case study using elite maize lines

Posted by gabrielamartinez on , in Journal Articles

57954Authors: Jiafa Chen.; Zavala, C.; Ortega, N.; Petroli, C.D.; Franco-Barrera, J.; Burgueño, J.; Costich, D.E.; Hearne, S.

Published in: PLoS One 2016, vol.11, no.6: e0157236

Quality control (QC) of germplasmidentity and purity is a critical component of breeding and conservation activities. SNP genotyping technologies and increased availability of markers provide the opportunity to employ genotyping as a low-cost and robust component of this QC. In the public sector available low-cost SNP QC genotypingmethods have been developed from a very limited panel ofmarkers of 1,000 to 1,500 markers without broad selection of the most informative SNPs. Selection of optimal SNPs and definition of appropriate germplasm sampling in addition to platform section impact on logistical and resource-use considerations for breeding and conservation applications when mainstreaming QC. In order to address
these issues, we evaluated the selection and use of SNPs for QC applications from large DArTSeq data sets generated from CIMMYT maize inbred lines (CMLs). Two QC genotyping strategies were developed, the first is a “rapid QC”, employing a small number of SNPs to identify potential mislabeling of seed packages or plots, the second is a “broad QC”, employing a larger number of SNP, used to identify each germplasm entry and tomeasure heterogeneity. The optimal marker selection strategies combined the selection ofmarkers with high minor allele frequency, sampling of clustered SNP in proportion tomarker cluster distance and selecting markers thatmaintain a uniform genomic distribution. The rapid and broad QC SNP panels selected using this approach were further validated using blind test assessments of related re-generation samples. The influence of sampling within each line was evaluated. Sampling 192 individuals would result in close to 100% possibility of detecting a 5%contamination in the entry, and approximately a 98%probability to detect a 2%contamination of the line. These results provide a framework for the establishment of QC genotyping. A comparison of financial and time costs for use of these approaches across different platforms is discussed providing a framework for institutions involved inmaize conservation and breeding to assess the resource use effectiveness of QC genotyping. Application of these research findings, in combination with existing QC approaches, will ensure the regeneration, distribution and use in breeding of true to type inbred germplasm. These findings also provide an effective approach to optimize SNP selection for QC genotyping in other species.

Effects of relay cover crop planting date on their biomass and maize productivity in a sub-humid region of Zimbabwe under conservation agriculture

Posted by gabrielamartinez on , in Journal Articles

57955Authors: Mhlanga, B.; Cheesman, S.; Maasdorp, B.; Mupangwa, W.; Munyoro, C.; Sithole, C.; Thierfelder, C.

Published in: NJAS Wageningen Journal of Life Sciences, 2016, vol.78, p.93–101.

Relay cropping of cover crops is a strategy of increasing biomass yields and productivity of maize-based systems. However, there is need to strategically plan the relay cropping to avoid competition between the main crop and the relay cover crops while at the same time obtaining optimum yields from both crops. A study was carried out in a clay soil in a sub-humid region of Zimbabwe to investigate the effect of introducing different relay cover crops at 8, 11 and 15 weeks after planting maize (WAPM) into a standing maize crop on biomass yield of the relay cover crops, their emergence and maize yields in the 2012–13 and 2013–14 seasons. From the results of the study, it was observed that the introduction of relay cover crops late in the season compromises their emergence and hence biomass yields (as low as 0.8 kg ha−1 for blue lupins (Lupinus angustifolius var. angustifolius (L.)). In a season where longer mid-season dry spells were experienced (2013–14), biomass yields of the relay cover crops were lower than in 2012–13 season. Delays in planting of relay cover crops (i.e. from 8 to 11 and from 11 to 15 WAPM) resulted in yield reductions of around 50%. Relay cover crops introduced at different periods of the season had no significant effects on maize grain and biomass yields. However, there are relay cover crops such as the velvet bean (Mucuna pruriens (L.) DC) and common oats (Avena sativa L.) that showed better emergence even in the sub-optimal conditions (with emergence as high as 90%). Of all the investigated relay cover crops, none could contribute to significant amounts of biomass thus insignificant increases in total plot biomass. There is need to investigate on other earlier planting dates that do not compromise the biomass productivity of such relay cover crops.

Weed management in maize using crop competition : a review

Posted by gabrielamartinez on , in Journal Articles

57957Authors: Mhlanga, B.; (s): Chauhan, B.S.; Thierfelder, C.

Published in: Crop Protection 2016, vol.88, p.28-36

Weeds are a major constraint to crop production, and are responsible for considerable yield losses in maize production systems throughout the world. Herbicides are widely used for weed control in maize production systems, but can have negative environmental consequences. Researchers have evaluated the use of crop competition and suppression to manage weeds in various crop combinations, including maize-based systems. Crop competition in maize may involve techniques such as reduced row spacing, increased planting density, and the use of competitive cultivars that exhibit weed suppressive potential. In this review, examination of the literature has revealed the considerable value of using crop competition in integrated weed management programs. Research has demonstrated that narrowing row spacing to half the standard distance reduced weed biomass by 39–68%, depending on weed species. Researchers have also demonstrated that increasing maize planting density by up to twice the standard rate achieved a reduction in weed biomass of 26–99%. While little research has been conducted into the use of competitive maize cultivars for weed management, several studies have documented cultivars with potential to suppress weeds. Attributes of weed competitive cultivars include high leaf area index, and other elements of leaf architecture that improve light interception by the crop, so increasing the shading of weeds. Combining crop competition methods with other agronomic practices can increase their effectiveness in controlling weeds. For example, biomass of Setaria italica (L.) Beauv was reduced by 60% when maize planting density was increased by 1.5 times the recommended spacing, and this effect was more pronounced when fertilizer was banded rather than broadcast. In summary, the strategic use of crop competition to control weeds has been a success in many regions, and is an important tool in integrated weed management. The importance of crop competition methods has particular relevance where farmers are unable to afford herbicides, as making use of crop competition is more economical.

High temperatures around flowering in maize : effects on photosynthesis and grain yield in three genotypes

Posted by gabrielamartinez on , in Journal Articles

57958Authors: Neiff, N.; Trachsel, S.; Valentinuz, O.R.; Balbi, C.N.; Andrade, H.F.

Published in : Crop Science Society of America Crop Science 2016, vol.56, p.1-11

To aid breeding for heat-tolerant germplasm we analyzed the effects of high temperatures on the CO2 exchange rate (CER), crop growth rate (CGR), kernel number (KN), and grain yield (GY) in a 30-d period bracketing flowering. Field experiments, including three maize (Zea mays L.) hybrids with temperate (Te), tropical (Tr) and temperate × tropical (Tx) adaptation were performed in two experiments (Exp. 1 and 2). Hybrids were subjected to high temperatures induced by shelters during a 15-d period before (H1; preflowering) or after silking (H2; postflowering). Crop growth rate was measured during the 30-d period bracketing silking (CGRCP), H1 (CGRPRE), and H2 (CGRPOST). Relative to nonstressed conditions, CER was reduced by 17 and 16% in H1 and H2. Moreover, CER was associated with CGRCP (r = 0.78; p ≤ 0.001), CGRPRE (r = 0.39; p ≤ 0.05), CGRPOST (r = 0.51; p ≤ 0.01), KN (Exp. 1, r = 0.53; p ≤ 0.01; Exp. 2, r = 0.49; p ≤ 0.01), and GY (Exp. 1, r = 0.59; p ≤ 0.01; Exp. 2, r = 0.46; p ≤ 0.05). As a result of heat stress, CGRCP (H1, −17%; H2, −29%), KN (H1, −7%; H2, −45%), and GY (H1, −10%; H2, −45%) were reduced relative to the control treatment. Stronger reductions for all traits in H2 relative to H1 emphasize the importance of sufficient CER during this period. The effect of high temperature on CER differed among hybrids (Tx > Te = Tr) and is promising for future germplasm screening.