Options for increasing the productivity of the rice–wheat system of north-west India while reducing groundwater depletion : Part 1. Rice variety duration, sowing date and inclusion of mungbean

Posted by gabrielamartinez on , in Journal Articles

56831

Authors: Singh, B. ; Humphreys, E.; Yadav, S.; Gaydon, D.S.

Published in: Field Crops Research, 173: 68–80, 2015.


 

The irrigated rice–wheat (RW) systems of north-west India are critical for food security. However, these systems are not sustainable due to over-exploitation of the groundwater resource on which they largelyrely. Current farmer practice (FP) involves manual transplanting of rice into heavily tilled/puddled soil from 10 June to early July, prolonged periods of flooding, rice residue burning, and heavy tillage prior to sowing wheat. Inclusion of a short duration mungbean crop between wheat harvest and rice transplanting has also been promoted at times. Options for reducing irrigation input to the RW system include delaying transplanting until after the monsoon rains start (late June), switching to shorter duration rice varieties, and alternate wetting drying (AWD) water management for rice. However, the effect of such practices on groundwater depletion is not well-understood. Examining the effects of these options on cropping system yield and components of the water balance and water productivity is highly complex because of the need to consider the interactions between each crop in the system. Therefore, we used a cropping system model (APSIM) to compare the performance of RW systems with a range of rice transplanting dates (4 dates from 10 June to 10 August) and rice variety durations (long – 158 d, medium – 144 d, short – 125 d), with and without mungbean in the system. The results suggest that changing from long to short duration varieties would reduce ET by around 250 mm, more than enough to halt the groundwater decline, but with a reduction in rice-equivalent system yield of about 2.5 t ha−1 compared with current FP.
On the other hand, inclusion of mungbean into the RW system results in much higher system yield than recommended farmer practice (by over 3 t ha−1), but the tradeoffs are much higher ET (by 250–300 mm) and irrigation requirement (by 300–450 mm). The results of this study suggest that more effort should be directed towards the development of higher-yielding, short duration rice varieties to reduce groundwater depletion of the RW system while maintaining yield, and that inclusion of short duration summer crops such as mungbean should not be recommended.

Tags: , ,

Trackback from your site.

Comments (1)

  • Florence

    |

    None can doubt the vetciary of this article.

    Reply

Leave a comment